Name ______ Date ______ Period ______

Chapter 10

10.1 Lines and Segments That Intersect Circles

Given that SR and ST are tangents, prove SR is congruent to ST.

Statements

<u>Reasons</u>

10.2 Finding Arc Measures

Example

Are the red arcs congruent?

10.3 Using Chords

What is a chord?

Definition:

Is a diameter a chord? Radius?

How does it compare to a secant? A tangent?

Congruent Corresponding Chords Theorem	
Perpendicular Chord Bisector Theorem	E H G
Perpendicular Chord Bisector Converse	

Why are $\angle F$ and $\angle D$ supplementary in diagram above right?

10.5 Angle Relationships in Circles

Circumscribed Angle Theorem	
	$m \angle ADB = 180^{\circ} - m \angle ACB$

Calculate x.

Big Ideas Ch 10 Notes

10.6 Segment Relationships in Circles

A shard of a Greek discus was found in an archaeological dig.

Use inscribed angles and similarity to find the diameter PR.

Calculate ML and JK.

Calculate x.

10.7 Circles in the Coordinate Plane

Circle Equation: From the Pythagorean Theorem. Center at the origin with radius r.

Standard Equation for Circle

Equation: _____

Sketch the Circle

Standard Form Rewrite the formula into standard form, then graph.

Coordinate Proof

Prove or disprove that the point $(\sqrt{2}, \sqrt{2})$ lies on the circle centered at the origin and containing the point (2, 0).